Novel Synthesis of 5-Amino-1-arylsulfonyl-4-pyrazolin-3-ones as a New Class of \boldsymbol{N}-Sulfonylated Pyrazoles \dagger
 Galal H. Elgemeie ${ }^{* a}$ and Nadia H. Metwallyb
 ${ }^{a}$ Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
 ${ }^{b}$ Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

A novel synthesis of 5-amino-1-arylsulfonyl-4-pyrazolin-3-ones via intramolecular cyclization of cyanoaceto-N-arylsulfonylhydrazides is reported and the synthetic potential of the method is demonstrated.

Recent reports from our laboratory and others have demonstrated the effectiveness of a variety of N-sulfonylated heterocycles and other antimetabolites as antiplastic agents in a number of experimental murine tumor systems. ${ }^{1-5}$ These compounds have been shown to cause inhibition of thymidine and uridine incorporation into DNA and RNA and appear to constitute a new class of antimetabolites. It was of interest to study their stereostructure and evaluate the effects of various structural modifications on biological activity. Recently, N-carboxyamidated pyrazoles were prepared in low yields from cyanoaceto- N-arylaminohydrazides. ${ }^{6}$ The present investigation reports a new, one-step synthesis of N-sulfonylated pyrazoles via intramolecular cyclization of cyanoacetoN -arylsulfonylhydrazides.

Thus, it has been found that cyanoacetohydrazide $\mathbf{1}$ reacts with arylsulfonyl chloride in ethanol to afford the corresponding cyanoaceto- N-arylsulfonylhydrazides $\mathbf{2}$ in good yields. The structures of $\mathbf{2}$ were established and confirmed on the basis of their elemental analysis and spectral data (mass, IR, ${ }^{1} \mathrm{H} N M R$). The analytical data for $\mathbf{2 a}$ revealed a molecular formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}, m / z\right.$ 239), ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to confirm this structure. Thus, a band at $\delta 3.63$ was assignable to the CH_{2} group, a multiplet at $\delta 7.56-7.86$ to aromatic protons and two broad singlets at $\delta 10.11$ and 10.40 to two NH groups ($\mathrm{D}_{2} \mathrm{O}$ exchangeable).

[^0]Compounds 2 on refluxing in ethanol containing catalytic amounts of piperidine undergo intramolecular cyclization to give the 5-amino-1-arylsulfonyl-4-pyrazolin-3-ones 4 or the tautomeric 5-amino-1-arylsulfonyl-3-hydroxypyrazole structures 5. The hydroxy form 5 would be expected to be more stable, because of the weakened basicity of the ring nitrogen at the 2 position, in turn arising from the adjacent heteroatom and the oxygen at the 3 position, however spectral studies indicated the presence of the NH tautomer in solution for all products, thus, the ${ }^{13} \mathrm{CNMR}$ for $\mathbf{4 a}$ revealed a signal at $\delta 170.81$ assigned to a carbonyl carbon atom, and its ${ }^{1} \mathrm{H}$ NMR revealed a broad singlet at $\delta 10.00$ assigned to an NH group ($\mathrm{D}_{2} \mathrm{O}$ exchangeable). No significant amounts of the alternative tautomer 5 could be detected in solution.

Experimental

Melting points were uncorrected. IR spectra were obtained (KBr disc) on a Pye Unicam Spectra-1000 spectrophotometer, ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectra on Wilmad 270 MHz or Varian 400 MHz spectrometers for solutions in DMSO- d_{6} using SiMe_{4} as internal standard and mass spectra on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Data Center at Cairo University.
General Procedure for Arylsulfonylcyanoacetohydrazides 2a-f.-A mixture of cyanoacetohydrazide $\mathbf{1}(0.01 \mathrm{~mol})$ and arylsulfonyl chloride (0.01 mol) in ethanol (30 ml) was stirred at room temperature for 24 h . The resulting solid product was filtered off and crystallized from EtOH.
2a: mp $170^{\circ} \mathrm{C}$, yield 88%. IR (KBr): $v / \mathrm{cm}^{-1} 3407,3284(\mathrm{NH})$, 2215 (CN, s), 1686 (C=O, s). ${ }^{1}$ HNMR (${ }^{(D M S O}-\mathrm{d}_{6}$): $\delta 3.63$ (s , $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.56-7.86\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.11(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 10.40$ (s, br, 1H, NH) $m / z=239$ (Found: C, 45.36: H, 4.0; N, 17.75; S, 13.60. Calc. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 45.16; H, 3.79; N, 17.56; S, 13.40%).

2b: mp $222-224^{\circ} \mathrm{C}$, yield 95%. IR (KBr): $v / \mathrm{cm}^{-1} 3400,3320(\mathrm{NH})$, $2220(\mathrm{CN}, \mathrm{s}), 1688(\mathrm{C}=\mathrm{O}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$) : $\delta 3.81(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $7.50-8.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.23(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 10.93$ (s , $\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$) $m / z=274$ (Found: C, 39.67; H, 2.75; N, 15.55; S, 11.90 . Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 39.47$; H, 2.94; N, $15.35 ; \mathrm{S}, 11.71 \%$).
2c: $\mathrm{mp} 211^{\circ} \mathrm{C}$, yield 92%. IR (KBr): $v / \mathrm{cm}^{-1} 3380,3300(\mathrm{NH})$, 2221 (CN, s), 1687 (C=O, s). ${ }^{1}$ HNMR (${ }^{(D M S O}-\mathrm{d}_{6}$): $\delta 3.71$ (s , $2 \mathrm{H}, \mathrm{CH}_{2}$), $7.44-8.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.23$ (s, br, $1 \mathrm{H}, \mathrm{NH}$), 11.05 (s, br, 1H, NH) $m / z=318$ (Found: C, 33.74; H, 2.72; N, 13.00; S, 10.27. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 33.94 ; \mathrm{H}, 2.53 ; \mathrm{N}, 13.20 ; \mathrm{S}$, 10.07%).
2d: mp $180^{\circ} \mathrm{C}$, yield 85%. IR (KBr): $v / \mathrm{cm}^{-1} 3380,3220(\mathrm{NH})$, $2220(\mathrm{CN}, \mathrm{s}), 1680(\mathrm{C}=\mathrm{O}, \mathrm{s}) \cdot{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$): $\delta 2.34$ (s , $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.11-7.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.77(\mathrm{~s}$, $\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$), 11.21 (s, br, $1 \mathrm{H}, \mathrm{NH}$). $m / z=253$ (Found: C, 47.60; $\mathrm{H}, 4.16 ; \mathrm{N}, 16.80 ; \mathrm{S}, 12.46$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.40 ; \mathrm{H}, 4.37$; $\mathrm{N}, 16.59$; S, 12.66%).
2e: $\mathrm{mp} 166^{\circ} \mathrm{C}$, yield 90%. IR (KBr): $v / \mathrm{cm}^{-1} 3480,34003220$ (NH), $2220(\mathrm{CN}, \mathrm{s}), 1687(\mathrm{C}=\mathrm{O}, \mathrm{s}) .{ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta 3.62$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.34-7.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.21$ (s, br, 1H, NH), 11.68 (s, br, 1H, NH). $m / z=269$ (Found: C, 44.77; $\mathrm{H}, 4.31 ; \mathrm{N}, 15.42 ; \mathrm{S}, 11.71$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$: C, 44.55; H, 4.11; N, 15.61; S, 11.91\%).
2f: mp $231-232^{\circ} \mathrm{C}$, yield 93%. IR (KBr): $v / \mathrm{cm}^{-1} 3370,33003250$ (NH), 2221 (CN, s), $1688(\mathrm{C}=\mathrm{O}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}$): $\delta 3.64$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $7.38-8.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.81(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) 11.31$
(s, br, 1H, NH), $m / z=284$ (Found: C, 38.22; H, 2.64; N, 19.91; S, 11.48. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 38.01$; H, 2.83; N, 19.71; S, 11.28\%).

General Procedure for 5-Amino-1-arylsulfonyl-4-pyrazolin-3-ones $\mathbf{4 a}-\mathbf{f}$.-A solution of $\mathbf{2 a}-\mathbf{f}(0.001 \mathrm{~mol})$ in 30 ml EtOH and piperidine $(0.3 \mathrm{ml})$ was refluxed for 3 h . The resulting solid product was filtered off and crystallized from EtOH-1,4-dioxane.

4a: $\mathrm{mp} 208-210^{\circ} \mathrm{C}$, yield 85%. IR (KBr): $v / \mathrm{cm}^{-1} 3480,3400$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 1615(\mathrm{CO}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right): \delta 4.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.78 (s, br, 2H, NH2), 7.63-7.85 (m, 5H, C6 ${ }_{6}$), 10.00 (s, br, 1H, NH), ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta 79.17$ (C-4), 128.5-134.85 (ArC), 158.94 (C-5), $170.81(\mathrm{C}-3) m / z=239$ (Found: $45.36 ; \mathrm{H}, 4.0 ; \mathrm{N}, 17.36 ; \mathrm{S}$, 13.60. Calc. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 45.16; H, 3.79; N, 17.56; S, 13.40\%).

4b: mp 255-256 ${ }^{\circ} \mathrm{C}$, yield 90%. IR (KBr): $v / \mathrm{cm}^{-1} 3600,3520,3400$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 1620(\mathrm{CO}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right): \delta 4.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $6.51\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.50-7.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.62(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, ${ }^{13}$ C NMR (DMSO-d ${ }_{6}$): $\delta 80.01$ (C-4), 127.8-133.92 (ArC), 158.53 (C-5), 170.25 (C-3) $m / z=274$ (Found: C, 39.27; H, 2.75; N, 15.15; S, 11.90. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 39.47$; H, 2.94; N, 15.35; S, $11.71 \%)$.

4c: mp $240-242^{\circ} \mathrm{C}$, yield 92%. IR (KBr): $v / \mathrm{cm}^{-1} 3820,3300\left(\mathrm{NH}_{2}\right.$, NH), 1625 (CO, s). ${ }^{1}$ H NMR (DMSO-d ${ }_{6}$): $\delta 4.41$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 6.81 (s , br, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.34-7.80 (m, 4H, C ${ }_{6} \mathrm{H}_{4}$), 10.82 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}$), ${ }^{13}$ C NMR (DMSO-d d_{6}): $\delta 79.73$ (C-4), 128.07-133.82 (ArC), 159.23 (C-5), $171.25(\mathrm{C}-3) m / z=318$ (Found: C, 33.74; H, 2.32; N, 13.40; S, 10.27. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, 33.94; H, 2.53; N, 13.20; S, 10.07\%).

4d: $\mathrm{mp} 203^{\circ} \mathrm{C}$, yield 84%. IR (KBr): $v / \mathrm{cm}^{-1} 3550,3500,3420$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 1630(\mathrm{CO}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.88\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.41-7.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 10.85 (s, br, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 18.22\left(\mathrm{CH}_{3}\right) 77.82$ (C-4), 127.23-133.24 (ArC), 156.23 (C-5), 169.89 (C-3) $m / z=253$ (Found: C, 47.20; H, 4.16; N, 16.39; S, 12.46. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.40 ; \mathrm{H}, 4.37$; N, 16.59; S, $\left.12.66 \%\right)$.

4e: $\mathrm{mp} 217^{\circ} \mathrm{C}$, yield 91%. IR (KBr): $v / \mathrm{cm}^{-1} 3620,3580,3410$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 1618(\mathrm{CO}, \mathrm{s}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 3.78(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.70\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.30-7.89(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 11.12 (s, br, 1H, NH). $m / z=269$ (Found: C, 44.77; H, 4.31; N, 15.42; S, 11.71. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 44.58$; H, 4.11; N, 15.61; S, 11.91(\%).
4f: $\mathrm{mp} 260-262^{\circ} \mathrm{C}$, yield 88%. IR (KBr): $v / \mathrm{cm}^{-1} 3560,3485,3400$ $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 1628(\mathrm{CO}, \mathrm{s}), \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 4.55(\mathrm{~s}, 1 \mathrm{H}$, CH), 6.66 ($\mathrm{s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 7.41-7.92 (m, 4H, C C_{6}), 11.0 (s, br, 1H, NH). $m / z=284$ (Found: C, 38.22; H, 2.64; N, 19.91; S, 11.48. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$: C, 38.01; H, 2.83; N, 19.71; S, 11.28\%).

Received, 16th January 1998; Accepted, 2nd March 1999 Paper E/8/00465J

References

1 G. E. H. Elgemeie, A. M. E. Attia, D. S. Farag and S. M. Sherif, J. Chem. Soc., Perkin Trans. 1, 1994, 1285.
2 G. E. H. Elgemeie and B. A. W. Hussain, Tetrahedron, 1994, 50, 199.
3 G. E. H. Elgemeie, S. E. El-Ezbawy, H. A. Ali and A. K. Mansour, Bull. Chem. Soc. Jpn., 1994, 67, 738.
4 P. Giori, A. C. Veronese, C. B. Vicentini and M. Guarneri, J. Heterocycl. Chem., 1985, 22, 1093.
5 T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P.W. Collina, S. Doctor, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Ragers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhultzen, Y. Y. Zhang and P. C. Isakson, J. Med. Chem., 1997, 40, 1347.

6 J. T. Drummond and G. Johnson, J. Heterocycl. Chem., 1988, 25, 1123.

[^0]: * To receive any correspondence.
 \dagger This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

